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Random Walks on Inhomogeneous Lattices

P. W. Kasteleyn' and W. Th. F. den Hollander'

For lattices with two kinds of points (“black™ and “white™), distributed accord-
ing to a translation-invariant joint probability distribution, we study statistical
properties of the sequence of consecutive colors encountered by a random
walker moving through the lattice. The probability distribution for the single
steps of the walk is considered to be independent of the colors of the points.
Several exact results are presented which are valid in any number of dimensions
and for arbitrary probability distributions for the coloring of the points and the
steps of the walk. They are used to derive a few general properties of random
walks on lattices containing traps.

KEY WORDS: Random walks; inhomogeneous lattice; perfect and imper-
fect traps; average number of steps until trapping; probability of return to
the origin; FKG inequality.

1. INTRODUCTION

Random walks on inhomogeneous lattices—i.e., lattices containing special
points, where the stepping probabilities of the walker differ from those on
other, regular, points—form the subject of a rapidly growing branch of
random-walk theory.(” The special points may be traps (sinks, absorbing
points), imperfect traps (partially absorbing points), points where the
walker has at each step a probability of pausing, or points where the
probability distribution for single steps deviates in any other way from that
on regular points.

Quantities on which interest has centered are: the average number of
steps made until trapping, the probability of return to the origin, the mean
square displacement after a given number of steps, and a number of related
quantities.
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The special points are usually assumed to be arranged in a fixed
periodic pattern or to be distributed at random. Only recently more general
arrangements of special and regular points have been considered.>~¥ For
periodic arrangements exact results can be obtained without too much
labor provided the number of special points in a unit cell of the pattern is
sufficiently small. For random and other arrangements the situation is
much more complicated and, with a few exceptions, one resorts to approxi-
mations valid for small concentrations of special points (or of regular
points).

The systems mentioned have one feature in common. The walker,
having started at a given point, moves through the lattice until, after a
certain number of steps (which may be zero), he visits a special point. If
this point is a perfect trap his walk comes to an end, but in other cases he
has a possibility to continue his walk and to visit new (or old) regular and
special points. Thus the walker samples the lattice in his own characteristic
way. In doing so he visits a sequence of points of two (or more) different
kinds, in an order determined by the stepping probabilities and the arrange-
ment of the special and regular points.

It is the aim of this paper to study the stochastic properties of this
sequence in a relatively simple case, where there are only two kinds of
lattice points, which we call black and white, and where the stepping
probabilities are the same for all lattice points, i.e., where the steps of the
walk are independent of the colors of the points. So we forget about perfect
and imperfect traps, pausing points or scatterers and we follow the walker,
registering only the colors of the points visited. Of course, this is only a first
step towards understanding the properties of walks that are influenced by
the colors, but, as we shall see, some applications can already be given. In
addition, we feel that the problems discussed here are interesting in their
own right.

2. BLACK-WHITE SEQUENCES

Let us consider an infinite d-dimensional lattice L of which the points
are colored black and white according to a given joint probability distribu-
tion 2. Thus, the lattice is inhomogeneous, but we assume that it is
statistically homogeneous in that & is translation invariant. This assumption,
which is in line with what one usually assumes, will be seen to be of crucial
importance. Examples of translation-invariant distributions are (a) the
random distribution; (b) periodic distributions (obtained by dividing L into
identically shaped and identically colored finite unit cells and assigning
equal probability to all distinct colorings of L obtained from the given one
by a translation; this is equivalent to the more usual procedure of taking a
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fixed periodic arrangement of the two kinds of points and allowing the
walker to start with equal probability at any point of a, unit cell) and
convex linear combinations of these; (c¢) (translation-invariant) canonical
distributions (Gibbs states) of lattices consisting of black and white points
with a given interaction (binary alloys, Ising models).

We next consider a random walk on L starting at the origin and
proceeding according to a probability distribution p for single steps which
is independent of the coloring of L [and translation invariant as usual:
pI'>1U'+ D)=pO0->D=:p)]

If we register the colors of the points which the walker successively
visits we get a sequence such as WWWWBBBWBWWB ... with B
= black, W = white. Such a sequence is the realization of a stochastic
process (Xg, X, X5, . . . ), where X,,, the color of the point visited at step #,
is a random variable taking the values B and W. The process is, of course,
entirely determined by the probability distributions & and p.

We shall study this process, in particular the stochastic properties of
the following two sequences of integers derived from it:

I. The numbers ny,ny,ny, ... (ng>0, n,>1 for i > 1) with the
property that X, = X, ,, = X, 4 4, = - - - = B, whereas X, = W for all
other n. In other words, 7, is the number of steps made by the walker untit
his first visit to a black point and #, (i > 1) is the number of steps made
between the ith and (7 + 1)th visit to a black point; for all / we call », “the
length of the ith run.”

II. The numbers s,5,,5,, . . . (s; > 1 for all i) with the property that
X, 7 Xsom 1> Xspus, 7 Xy a5,—15 - - - » Whereas X, = X, _; for all other s. In
other words, s, is the number of steps made until the first change in color
and 5; (i » 1) is the number of steps between the ith and the (i + 1)th
change in color. Equivalently, s, is the length of the (i + 1)th sequence of
equal consecutive colors.

Obviously, the sequence of numbers (ny,n,, ... ) determines the se-
quence (s, 5, - - . ); the converse is equally true if we also specify the color
of the starting point. Observe that these sequences, unlike the basic se-
quence (X, X, ...), may be finite: if there is a number » such that
X, =X, for all n > n, then the sequence (s;) is finite, and if moreover
X, = W then also the sequence () is finite. Averages such as {(n,> and {s,>
should therefore always be understood as conditional averages given that
the numbers involved are finite.

I. We first investigate the sequence (n,). Let £, , , be the probabil-
ity that at least i + 1 runs, of lengths ny,n,, ..., n, are completed, and
P, ., the probability that at step n a black point (not necessarily the
first one) is visited and that subsequently / runs, of lengths n,, . . ., n;, are
completed.
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Since a walker visiting a black point does so either for the first time or,
say, m steps after his previous visit to a black point, we have

Pn;nl...-_anl... 2 —mymng . ..n (1)

For n = 0 the sum in the right-hand side is empty.

Now the subwalk beginning with the (z + 1)th step may be considered
as a complete walk in itself. By the translation invariance of the probability
distributions 3” and p, however, the probability distribution for the se-
quence (X,,X,,,,...) is identical to that for (X, X,,...). Hence,
P is 1ndependent of n, so that we may replace » by 0 and write

mny ..o

n
PO;nl...n,=an|...n,-+ 2 PO;mn,...n,-
m=1

n ... n- Eliminating the P’s we

which for n =0 reduces to Py, , =F,
obtain the following relation for the F’s:

F, .n,-=F0nl..4n,-— FOmnl...n‘- (2)
1

nny ..

HYE

From this relation, in particular that for i = 0:
n
m=1

one can draw a number of interesting conclusions, of which we mention the
following ones.
1. Subtracting Eq. (3) for two consecutive values of n we get

F—I*Fn=F0n>0 (4)

n

Thus, F, is a monotonically nonincreasing function of n. This result is not
easily extracted from the expressions for ¥, which have been derived for
periodic distributions’® and the random distribution.'® It excludes distri-
butions for F, with a maximum at a certain value of n. It is further obvious
that the F, tend to zero for n — o, since the total probability of visiting at
least one black point, F/:=3%_(F  is < 1.

2. Summing Eq. (4) over n we obtain

[ce]
Ff:= 21F0n= Fo=gq

ne=
where ¢ denotes the probability that a point is black, which we assume to
be > 0. Hence the conditional probability F{/F, that at least one more
black point is visited given that the walk starts at a black point, equals one.
More generally it can be shown that 37°_\F, , . /F, ., =1, ie, that
if ¢ visits to a black point have taken place then another visit to a black
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point will occur with probability one.* Hence the probability that the
sequence (#,) is infinite equals F.

3. The average number of steps made until the next visit to a black
point given that the walk starts at a black point is

[oo] o]

e 1 1 & F

(m|By = S nFo) S Foym Fs' S n(Fyy~ F) = Fi' S Fy= £
n=1 n=1 n=1 n=0 q

)

It can further be shown that (n,| BY = (n,| B) for all i > 1.*¥ The proba-
bility F/ can be expressed in terms of L, &, and p'”; in most cases of
physical interest it is equal to 1, so that we have the simple result
(m|By=1/q (©)
This relation is a generalization of a result derived by Montroll'® for
periodic trap distributions with one trap per unit cell of N points (where
g~ '= N). For the random distribution it is one of the few exact results.

II. We now consider the sequence (s;). Let B, , be the probability
that the sequence (X)) starts with s, successive B’s, followed by i more

sequences of equal colors, alternately W’s and B’s, of lengths s, ..., 5;;
W, ...s is defined analogously by interchanging B and W.

By the same argument that led to Eq. (3) we can now derive the
following relation:
s—1

st,...s.::WlsI...s,-—_lelrsl...si (7)

i

and a similar equation for B, .. We mention some of the consequences
of these equations.

L We = W,=B,_, B

§

S Bi=Wi

The first equation is identical with Eq. (4), since W, = F, and B, = F .
The second equation is new, however; in this connection we mention that

B =Fy,. 1= Fou...u

s—1 s
[e¢] o0
2. 2 B,=W,, 21 W= B, (8)
s=1 5=

Since X, B;, < B, and 3 ,W, < W, we conclude from Eq. (8) that W,
= B,. It thus follows that the probability of beginning the sequence (X,) by
two different colors is independent of the first color, X,; we denote it by Q.
From the translation invariance it then follows that the probability of
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having X, # X, _, is equal to Q for all n. Note that the value of @ depends
on L, #, and p.

3. If Q >0, the average values of s; under the conditions X, = B,
X, = Wand X,= W, X, = B are, respectively,

@[ BWy= 338,/ B Bu= 07 S oW~ W)

= “lwW=:M
Q sgl ’ Q

(| WBY=0"' 3 B=: B
s=1 Q

More generally, it can be shown that

<s2j+1 | BW) = <S2j| WB) = %f
)
B/
<S2j+1 | WB) = <S2leW> = —Q_
Observe that W/, the probability of starting with a finite sequence of W’s,
is <1—g, and that B/ < ¢. In most cases we have W/=1-g4, B/ =g4.
For the random distribution and walks with p(0) =0 we further have
Q = q(1~ ¢), and hence (s, | BW) =q ', (s, | WBY=(1— ¢q)"!, etc.
The results obtained thus far are valid for lattices of any dimensional-
ity, for all (translation-invariant) color distributions and all walks (simple or
nonsimple, recurrent or transient, with finite or infinite step variance). As
such they are in sharp contrast with some results which have been, or may
be, found if no condition is imposed on the initial color(s) of the sequence.
For the averages {n,> and {s;, e.g., one can obtain wildly varying results,
depending on L, #, and p. Still, it is possible to derive some exact relations
for these averages by making use of the simple results of the present
analysis.!

3. APPLICATIONS

Let us now identify the black points with imperfect traps, ie., with
traps that are such that the walker, when stepping on one, has a probability
n >0 of remaining free (i.e., of continuing the walk) and a probability
1 — 5 of being trapped forever (i.e., of terminating the walk). Let T, be the
probability that the walker is trapped at the ath step. It is easily seen that
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the generating function for trapping, T(z):=>%_,T,z" is given by
=]

TO=(-Z0 S X B, (10

ng=0 ny, ..., n=1

Now consider the function
3@y S (T, 1= )= Ty= (1= 97)
Noting that T, = g(1 — ) and using Eq. (2) we find, after a little algebra,

Since the coefficients of all powers of z in the right-hand side are non-
negative, we have T,_, — T, > 0 for all n > 0. This is a generalization of
Eq. (4).

For a more specific application we interpret the black points as perfect
traps (n =0) and we restrict ourselves to the random distribution. We
consider in particular two quantities: (ng», the average number of steps
made before trapping, and r, the probability that the walker returns to the
starting point without having been trapped. We first summarize some
results mentioned in the literature and the extension of these results which
can be obtained by a careful analysis of known data.()

Both (ny) and r have been related to the number of distinct sites
visited in n steps on the lattice without traps, S,. The connection between
{ny> and S, runs via the probability f, that during the first n steps the
walker has not yet visited a trap. Since

e}

= S nth=h)= 2 J

n=1

and f, = ((1 — )™ (where the average is taken over all walks) we have

=3 (1= 9™ (1

Expanding the right-hand side of Eq. (11) in powers of g, using
asymptotic expressions for ¢S > and (S for n—> oo together with a
certain amount of information on the asymptotic behavior of the probabil-
ity distribution for S, and applying the Euler—Maclaurin formula one can
derive expressions for (n,> valid for small 4. For (aperiodic) d-dimensional
symmetric walks with finite step (co)variance [i.e., walks with p(!) = p(—1)
and Cj;:=3,c,Llp(l) < oo for all pairs of components i, j=1,..., d]
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and if d = 2,3, or 4 also with 3, ;L /,(I) < oo one finds

u uu uu
d=2: {n =—110(L)+10 10(4—)
{ngy q[ g p glog p

loglog(uu/ q) 1K .
log(u,u/q) log(u,u/q)
(12a)
d=3: {nyy= % —uluo_l( ] )1/2 + lu%uo'zlog( ﬂ) + cee (12b)
q q 2 q
=4 _ % —1 Uy
d=4: {(npy=— —uu, log(——)—u+--- (12¢)
q q
Uy
d>5: <n0>=71——w+~-- (12d)

where u, = 1/27C, 1/2"’zC, 1/47*C for d = 2, 3, and 4, respectively, with
C*i=det{C;}, uy= G(0; 1) = (1 — F)~', with G(/; z) the Green’s function
(F 1is the probability of return to the origin in the absence of traps) and u, v,
w are constants (e.g. for the simple random walk u = 8) that are related in a
somewhat more complicated way to the Green’s function; further, K =
—[odx(1— x + x?) 'logx = 1.171953 . . . . By a different line of reason-
ing one finds

d=1: (= Ciq"‘ + o (12¢)
Equation (12d) can be shown to be equally valid for all asymmetric
walks with finite step variance in all dimensions and for all walks with
infinite step variance in d > 5. Altogether Egs. (12a)-(12¢) express a rich
variety in behavior.
A similar variety is found for r, where an additional argument is
required before the results obtained for S, can be applied. For symmetric
random walks with finite step variance one finds

d=3: r=F—uu; q"*+ .- (13a)
d=4: r=F~— u1u0_3qlog(%)+ v (13b)
d>5 r=F—wq+ - (13¢)

where w' is related to the Green’s function. Further it is known that for
simple random walks in d = 1

r=1-—

9 logl 13d
T—¢ °q (139
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For d = 2 and for nonsimple random walks in d = | no expression for r is
known. Again, Eq. (13c) is also valid for asymmetric walks with finite step
variance and for all walks in d > 5.

We now return to the language of colorings and introduce the analogs
of {n,> and r for each fixed configuration C of black points, to be denoted
by (ne>'© and r(©. If we average these quantities under the random
distribution over the set € of all configurations on L, we obviously have

—v —
{ngy = ()9, r=r©

Let now €2 (£€%) be the set of all configurations containing (not
containing) the origin 0. If C € €%, the walker may return to the origin
before visiting a black point. To take this fact into account, we first
consider the average number of steps required to reach either a black point
or 0. This number may be denoted by {(n, "%, where C U0 is the
configuration obtained from C by adding 0, i.e., by changing the color of 0
from white to black. If the walker returns to 0 he can continue his walk as
if he has just started; the probability that this happens is 7. Thus we have

()@ = (n YD + 1O ngyt (14)

and hence, with an obvious extension of notation,

(1= 7Oy @ " = Gy (15)

Since the color distribution is random, the probability of any coloring of a
neighborhood of 0 is independent of the color of 0 and therefore

i€ = iy © < (| By = ¢ (16)

where the latter equality follows from Eq. (6) [provided we exclude the
degenerate walk with p(0) = 1, which for this distribution can be shown to
be the only walk for which F/ < 1¢¥].

If we combine Egs. (15) and (16) and extend the averaging so as to
include the C € €%, using the fact that (n,>(© = 0 for C € €2, we finally
obtain

© o’_1-4g
(=)@ = 4 (17)
The simplicity of this result, which is exact and valid for all (nonde-
generate) walks and all ¢ > 0, is in striking contrast with the specificity of
the results (12a)-(12e) and (13a)~(13d).
Equation (17) has interesting consequences. For example, since 0
< r'© < F we find immediately the following bounds for (n,>:

1— - .
< (ngy < =4 (18)
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The upper bound (which makes sense only if F < 1) is not trivial; the lower
bound, however, is, for it also follows immediately from the obvious
inequality S, < n + 1. To find a sharper lower bound we observe that both
r(© and (n)'© decrease (or at most remain unaltered) if black points
(traps) are added to C. Together with the fact that the colors of the points
are independent random variables this ensures that the so-called FKG
inequality*'? holds for the correlation between 7(© and (n)(©:

—_————f  ——f———
r(C')<n0>(C') — (O <n0>(C) >0

From this inequality we obtain, using Eq. (17),

(I=r¥ny >(1-9)/q (19)
so that we end up with the following bounds for {ng):
l~g l1—g
—L <y < —~=~L—~ 20
(=ng =" ST Fy 9

where it is to be noted that » = r(g) and F = r(0). Conversely, Eq. (19) can
be considered to yield an upper bound for the quantity r, which is less well
known than {ng):

l-g¢g

g<noy

It can be shown that the inequality (19) is not restricted to the random
distribution alone but has a wider domain of validity. Furthermore, Egs.
(17) and (19) can be extended to the case of imperfect traps.(®
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